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Abstract
The full random-effects model (FREM) is a method for determining covariate 
effects in mixed-effects models. Covariates are modeled as random variables, de-
scribed by mean and variance. The method captures the covariate effects in esti-
mated covariances between individual parameters and covariates. This approach 
is robust against issues that may cause reduced performance in methods based 
on estimating fixed effects (e.g., correlated covariates where the effects cannot 
be simultaneously identified in fixed-effects methods). FREM covariate param-
eterization and transformation of covariate data records can be used to alter the 
covariate-parameter relation. Four relations (linear, log-linear, exponential, and 
power) were implemented and shown to provide estimates equivalent to their 
fixed-effects counterparts. Comparisons between FREM and mathematically 
equivalent full fixed-effects models (FFEMs) were performed in original and sim-
ulated data, in the presence and absence of non-normally distributed and highly 
correlated covariates. These comparisons show that both FREM and FFEM per-
form well in the examined cases, with a slightly better estimation accuracy of pa-
rameter interindividual variability (IIV) in FREM. In addition, FREM offers the 
unique advantage of letting a single estimation simultaneously provide covariate 
effect coefficient estimates and IIV estimates for any subset of the examined co-
variates, including the effect of each covariate in isolation. Such subsets can be 
used to apply the model across data sources with different sets of available covari-
ates, or to communicate covariate effects in a way that is not conditional on other 
covariates.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Most existing methods for covariate modeling estimate fixed effects in full 
model approaches or stepwise model building. The performance of these meth-
ods is well-documented, but they also have well-known downsides, such as is-
sues with correlated covariates and potential multiple-testing problems. Their 
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INTRODUCTION

Covariate modeling is an integral part of pharmacomet-
rics, where understanding the observed interindividual 
variability (IIV) is central. The inclusion of subject-specific 
predictors on model parameters can explain this variabil-
ity by attributing it to individual features, and can thereby 
improve model predictions. This can in turn enable infer-
ence within and between populations, and enhance the 
ability of model-informed analyses to answer scientific 
and clinical questions.

Covariate models can be built by adding fixed-effects 
parameter-covariate relations step-by-step to gradually ex-
plain portions of the IIV with covariate effects. The parame-
ter IIV without any covariate effects represents the total IIV 
parameter variability (TPV), and each included covariate-
parameter relation explains a portion of this variability, 
leaving a gradually altered unexplained IIV parameter 
variability (UPV). Stepwise selection of the best covariate 
model from multiple competitors, according to likelihood-
ratio tests, has been automated in stepwise covariate mod-
eling.1 Although this approach can be successful, stepwise 
selection processes have a multiple testing problem, and 
may overestimate covariate effects due to selection bias 
and inflated type-I error,2,3 problems that are exacerbated if 
correlated covariates are considered.4,5 Imposing stringent 
selection criteria (α < 0.05) reduces the risk of type-I error, 
but does so at the cost of reduced power.2,6

The full covariate model has been suggested as an alter-
native to stepwise procedures (Gastonguay5; A full model 
estimation approach for covariate effects: Inference based 
on clinical importance and estimation precision, 2004). 
In this approach, which we will refer to as the full fixed-
effects model (FFEM), a set of noncorrelated covariates is 

identified prior to model evaluation. That full set is then 
implemented with simultaneously estimated fixed-effect 
coefficients for each covariate-parameter relation, thus 
avoiding the multiple testing problem. If a more parsimo-
nious model is desired from the FFEM, e.g., for prediction, 
then stepwise backward elimination can be performed 
based on statistical and clinical significance,7 although 
this may curtail the benefits of the full model approach. 
Alternatively, the model can be reduced by simultane-
ously removing all relations with effect coefficients below 
a certain threshold,8 which better maintains the advan-
tages of the full model approach but does not account for 
correlations that may hide a larger compound effect of the 
removed relations.

The full random-effects model (FREM) originally pro-
posed by Karlsson9 also makes use of a predefined set of 
covariates in a full model. However, instead of capturing 
covariate effects in fixed-effect coefficients, FREMs takes 
each covariate as observations of individual deviations 
from a population value. It estimates a full IIV random 
effect covariance matrix that contains parameter IIV, co-
variate IIV, and the covariances between the two. The 
covariate effects are captured in the covariances between 
covariate IIV and parameter IIV. Unlike FFEM, this im-
plementation of covariate effects does not rely on estimat-
ing multiple fixed effects on the same parameter and can 
therefore include correlated covariates in the analysis. 
There are several successful applications of FREM in lit-
erature10–12 and a description of the handling of missing 
covariate data using FREM,13 but an introduction to the 
method has been lacking.

An FREM model estimates the TPV and the covariate 
IIV, and the estimates cannot be immediately interpreted 
in the same way as FFEM estimates. To aid in interpreting 

interpretation is also limited to the exact set of covariates included. A full random 
effects approach that addresses some of these limitations has been proposed, but 
a detailed presentation is lacking in literature.
WHAT QUESTION DID THIS STUDY ADDRESS?
This work provides a more detailed introduction to the full random-effects model 
(FREM) and demonstrates its performance compared with full fixed-effects mod-
els (FFEMs) in several real and simulated data scenarios.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Compared with FFEMs, FREM is less restrictive in the selection of covariates to 
include in the analysis, and much more informative from a single estimation.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Covariate effects can be better described, better communicated, and more eas-
ily carried forward to new analyses. The appropriate covariate sets for inference, 
prediction, or comparison to other studies may be different, but they can all be 
extracted from a single FREM estimation.
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the results, coefficients and UPV IIV variances that are 
equivalent to those from a corresponding FFEM can be 
calculated from the FREM matrix. Although this involves 
an extra step compared to FFEMs, it also offers a lot of 
flexibility because the user can choose what covariates to 
include at that stage. The coefficients and parameter IIV 
for any covariate subset can be calculated from that same 
estimation of the full FREM matrix, from the full set down 
to the univariate coefficients, the isolated impact of each 
covariate. By contrast, any interpretation of the FFEM is 
restricted to that exact model. Each additional model must 
be estimated separately, which can be time-consuming, 
and can lead back to multiple testing issues if the models 
are compared statistically. The FREM is mathematically 
equivalent to the FFEM for a wide range of covariates and 
parameter-covariate relations, but challenges remain in 
handling time-variations, nonlinearities, and covariates 
with multinomial distributions.

This work seeks to provide the definition and practical 
demonstration of the FREM method that has been miss-
ing in literature. We will describe the FREM approach in 
further detail and compare its performance to FFEM in 
real and simulated data. We will specifically examine es-
timation accuracy in the presence and absence of highly 
correlated covariates. Because of how FREM represents 
covariates using normal distribution means and variances, 
we will also investigate the impact of including non-
normally distributed covariates and explore how some 
common parameter-covariate relation parameterizations 
can be implemented in FREM.

METHODS

FREM introduction

Consider an FFEM example model that expresses some 
quantity y for observation j in individual i as a function 
of two parameters (P1,P2), time (t), and residual error (�),

with IIV and linear relationships with two covariates 
(C1, C2 ) on both parameters,

where �P is the population value for parameter P, �CP is the 
coefficient for the effect of covariate C on parameter P, C is 
the population mean of covariate C, �′

P,i
 is the IIV random 

effect for the UPV (unexplained parameter variability after 
covariate inclusion) on parameter P, and Ω�

par is the UPV 
random effect covariance matrix. Note that two fixed-effect 
coefficients on the same parameter will not be independently 
identifiable if the two covariates are highly correlated.

In FREM, the data records of a covariate are consid-
ered individual observations of a dependent variable. An 
FREM that is equivalent to the FFEM in Equations  1–4 
expresses yi,j, C1,i, and C2,i,

where �C,i is the individual deviation from the covariate pop-
ulation value �C (here �C = C), and �P,i is the IIV random 
effect for the TPV (total parameter variability including IIV 
explained by covariates) of parameter P.

For the purposes of this work, we assume a single 
error-free observation of each covariate for each individ-
ual, and use normally distributed random effects to cap-
ture properties of the covariate distribution. It is expected 
that when covariate observations are error-free, the calcu-
lation of means, variances, and covariances, which is the 
aim of the estimation, is independent of the actual covari-
ate distribution. Because of this, FREM can be used for 
covariates of any underlying distribution.

The FREM approach captures covariate-parameter 
relations in the full IIV covariance matrix ΩFREM, which 
consists of the IIV random effect covariance matrices for 
parameters (Ωpar), covariates (Ωcov), and the covariances 
between parameter random effects and covariate random 
effects (Ωpar,cov), (i.e., for this example):

(1)yi,j=P1,itj+P2,i+�i,j, �i,j∼N(0, �
2)

(2)

P1,i = �P1 + �C1P1

(
C1,i − C1

)
+ �C2P1

(
C2,i − C2

)
+ ��P1,i

(3)

P2,i = �P2 + �C1P2

(
C1,i − C1

)
+ �C2P2

(
C2,i − C2

)
+ ��P2,i

(4)

[
𝜂�
P1,i

𝜂�
P2,i

]
∼ N

(
�⃗0 ,Ω�

par

)

(5)
⎧⎪⎨⎪⎩

yi,j=P1,itj+Pi+�i,j, �i,j∼N
�
0, �2

�
C1,i=�C1 +�C1,i

C2,i=�C2 +�C2,i

(6)P1,i = �P1 + �P1,i

(7)P2,i = �P2 + �P2,i

(8)

⎡⎢⎢⎢⎢⎣

𝜂P1,i

𝜂P2,i

𝜂C1,i

𝜂C2,i

⎤⎥⎥⎥⎥⎦
∼ N

�
�⃗0 ,ΩFREM

�

(9)ΩFREM =

�
Ωpar Ωcov,par

Ωpar,cov Ωcov

�
=

⎛
⎜⎜⎜⎜⎜⎝

�2P1
�P2P1 �C1P1 �C2P1

�P1P2 �2P2
�C1P2 �C2P2

�P1C1 �P2C1 �2C1
�C2C1

�P1C2 �P2C2 �C1C2 �2C2

⎞⎟⎟⎟⎟⎟⎠
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From this matrix, we can calculate the covariate-
parameter relation coefficients and UPV for any com-
bination of included covariates (i.e., the parameter 
distributions conditional on any subset of covariates). In 
the present example, the coefficients, conditional on C1 
and C2, are available as the matrix B:

For the simplest case where the effect of one covariate 
is considered in isolation, the coefficients are calculated 
from FREM results as the ratios of the parameter-covariate 
covariances and the variance of the covariate, i.e., condi-
tional only on C1:

These are the univariate coefficients that capture the 
effects of a single covariate without the influence of any 
other. The corresponding UPV, conditional only on C1, can 
be similarly calculated:

For a more in-depth description of conditional coeffi-
cients, see Supplementary Material SC.

The FREM in Equations  5–8 is equivalent to a lin-
ear covariate-parameter relation. Other FREMs that are 
equivalent to other fixed-effect covariate effect models can 
be formulated by altering the IIV parameterization in the 
FREM, by transforming the covariate observation data, 
or by a combination of the two. Four common covariate-
parameter relations were implemented in this work and 
are shown in Table 1.

Experiments

A previously developed model of circulating neutrophil 
counts after docetaxel treatment with original data from 
601 patients,14 was selected as a test case for investigating 
FREM and comparing it to FFEM. The model incorpo-
rated five compartments (3 transit compartments), addi-
tive and proportional residual error, and four structural 
parameters: neutrophil baseline (base), mean transit-time 
(MTT), slope of drug effect (slope), and feedback mecha-
nism power (γ). To shorten runtimes γ was fixed to 0.154. 
The remaining three parameters were parameterized with 
exponentially distributed IIV.

Five covariates were available in the original data: 
age (years), sex (male or female), serum level of α1-acid-
glycoprotein (AAG; g/L), performance status grade (perf; 
0, 1, or 2), and prior chemotherapy (yes or no). Five pa-
tients had no performance status observations and were 
excluded from all experiments, leaving 596 patients with 
no missing covariate observations. All covariate correla-
tions were low (<40%).

The FREM implementation considers only continu-
ous and dichotomous covariates, and the trichotomous 
perf covariate was therefore dummy-coded15 according 
to Equation  13 into perf01 and perf12, for a total of six 
covariates.

All simulations and estimations were performed using 
NONMEM16 with the stochastic simulation and estima-
tion procedure from Perl-speaks-NONMEM.17 Importance 

(10)B=

(
�C1P1 �C2P1
�C1P2 �C2P2

)
=Ωpar,covΩ

−1
cov

(11)�C1P1 =�C1P1∕�
2
C1
, �C1P2 =�C1P2∕�

2
C1

(12)�2
�

P1
=�2P1

−�C1P1�C1P1 , �2
�

P2
=�2

�

C1P2
−�C1P2�C1P2

(13)perf01=

⎧⎪⎨⎪⎩

1, ifperf=0

1, ifperf=1

0, ifperf=2

, perf12=

⎧⎪⎨⎪⎩

0, ifperf=0

1, ifperf=1

1, ifperf=2

T A B L E  1   Equivalent FFEM and FREM parameterizations of four common continuous covariate-parameter relations

Covariate-parameter relation

FFEM FREM

IIV parameterization IIV parameterization Covariate data transformation

Linear Pi = �P + �CP
(
Ci − C

)
+ ��

P,i
Pi = �P + �P,i
Ci = C + �C,i

–

Log-linear Pi = �P + �CP
(
lnCi − lnC

)
+ ��

P,i
Pi = �P + �P,i
Ci = lnC + �C,i

Log-transformed

Exponential Pi = �Pe
�CP(Ci−C)+��P,i Pi = �Pe

�P,i

Ci = C + �C,i

–

Power
Pi = �P

(
Ci
CGM

)�CP
e�

�
P,i

Pi = �Pe
�P,i

Ci = lnC + �C,i

Log-transformed

Abbreviations: �CP, covariate-parameter effect coefficient; CGM, covariate population geometric mean; Ci, individual covariate value; C, population mean 
of covariate; FFEM, full fixed-effects model; FREM, full random-effects model; IIV, interindividual variability; lnC, population mean of log-transformed 
covariate; �P, population parameter value; �′

P,i
, individual deviation from population value unexplained by covariates; �i, total individual deviation from 

population value; Pi, individual parameter value.
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sampling with mode a posteriori (IMPMAP) was the main 
estimation method. In order to estimate FREMs without re-
sidual error on the covariate model in NONMEM, an addi-
tive residual error with a very small, fixed variance was added 
to the covariate observation model (see Supplementary 
Material SA). Data analysis and transformations were per-
formed in R18 with figures by ggplot219 and corrplot.20

Original data comparison to FFEM

To demonstrate the FREM method, and its ability to pro-
duce coefficients and variability for any covariate subset 
from a single estimation, FREM coefficient values for the 
complete set of covariates and two covariate subsets were 
compared to the corresponding fixed-effects estimates. 
Three FFEMs were estimated with covariate effects on all 
estimated structural parameters, one including all six co-
variates, one including a three-covariate set (AAG, perf01, 
and perf12) and one including a single covariate (AAG). 
The conditional coefficients and UPV for the full set and 
the two subsets were calculated from a single FREM es-
timation including all six covariates (see Supplementary 
Material SA).

Simulated data comparison to FFEM

The consistency of FREM compared to FFEM was examined 
in a simulation experiment. An FFEM simulation model 
with 18 covariate-parameter relations (see Supplementary 
Material SB) was used to generate 150 datasets. The simu-
lated datasets were then re-estimated using both FFEM and 
FREM (initialized similarly), and the covariate-parameter 
relation coefficients and UPV were compared with respect 
to accuracy and agreement between methods.

High correlation

To investigate FREM performance in the presence of 
highly correlated covariates, a simulation experiment was 
performed with AAG and a highly correlated derived bi-
nary covariate, AAGhi:

The breakpoint (1.35) was chosen such that half of the 
individuals were assigned to each category, and resulted 
in 76% correlation between AAG and AAGhi. An FFEM 
simulation model with six covariate-parameter relations, 

AAG and AAGhi on each of base, MTT, and slope (see 
Supplementary Material SB) was used to generate 228 
datasets. Similarly initialized FREM and FFEM methods 
were then re-estimated on each dataset, and the covariate-
parameter relation coefficients and UPV were compared.

Parameterizations

The four covariate-parameter relations defined in Table 1, 
linear, log-linear, exponential, and power, were applied to 
the two continuous covariates, age and AAG. Equivalent 
FREM and FFEM estimates of covariate-parameter effect 
coefficients and UPV were compared.

Non-normal covariate distributions

The robustness of the FREM approach when applied to 
covariates of non-normal distributions was tested by 
comparing estimates for original data and data with log-
transformed observations of the two available continuous 
covariates, age and AAG. An FREM model with age and 
AAG, and log-normally distributed parameters, was esti-
mated on the two datasets, and the estimates of covariate-
parameter effect coefficients and UPV were compared.

RESULTS

Original data comparison to FFEM

The FREM and FFEM methods were successfully applied 
to the original data. The estimated FREM matrix is pre-
sented on correlation scale in Figure 1, together with a co-
variate correlation matrix from R for comparison.

Covariate-parameter relation coefficients and UPV 
covariance matrices for all three scenarios could be accu-
rately calculated from this single FREM estimation, closely 
matching the results of the three FFEM estimations. The 
AAG coefficients and UPV matrices from the three FFEM 
models are compared to their FREM equivalents in Table 2.

Simulated data comparison to FFEM

The common model parameters, structural parameters, 
residual error, and IIV covariance matrix showed no 
relevant differences in re-estimation accuracy between 
FREM and FFEM, although FREM IIV covariance ma-
trix estimates had a tendency toward higher precision, as 
shown in Figure 2. The mean of the root mean squared er-
rors (RMSEs) of the 18 coefficient estimators were 0.0272 

(14)AAGhi=

{
0, if AAG<1.35

1, if AAG≥1.35
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F I G U R E  1   Correlation matrix of parameters (base, MTT, and slope) and covariates (age, AAG, sex, perf01, perf12, and PC; framed) from 
FREM estimation on original data (left), as compared to empirical correlation matrix of covariates from R (right). MTT, mean transit-time; 
PC, prior chemotherapy; PERF, performance status grade

T A B L E  2   AAG covariate-parameter relation coefficients and UPV matrices from FREM and FFEM for three covariate sets

Covariate set Method

AAG effect coefficients UPV covariance matrix

βAAG,base βAAG,MTT βAAG,slope ωbase ωMTT ωslope

Full set (age, AAG, sex, perf01, perf12, PC) FREM 0.290 −0.0247 −0.480 ωbase 0.106

ωMTT −0.00359 0.0224

ωslope −0.019 0.015 0.145

FFEM 0.291 −0.0247 −0.481 ωbase 0.106

ωMTT −0.00356 0.0224

ωslope −0.019 0.015 0.144

Three covariates (AAG, perf01, perf12) FREM 0.336 −0.0211 −0.490 ωbase 0.117

ωMTT −0.00325 0.0225

ωslope −0.0226 0.0154 0.148

FFEM 0.335 −0.0215 −0.491 ωbase 0.117

ωMTT −0.00333 0.0225

ωslope −0.022 0.0158 0.148

One covariate (AAG) FREM 0.372 −0.0246 −0.506 ωbase 0.121

ωMTT −0.00356 0.0226

ωslope −0.0247 0.0155 0.149

FFEM 0.372 −0.0249 −0.507 ωbase 0.122

ωMTT −0.00357 0.0226

ωslope −0.0239 0.016 0.149

The FREM results were calculated from a single estimation using the full set of covariates, while the FFEM results are estimated separately for each covariate set.
Abbreviations: AAG, serum level of α1-acid-glycoprotein; FFEM, full fixed-effects model; FREM, full random-effects model; MTT, mean transit-time; perf, 
performance status grade; UPV, unexplained parameter variability.
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and 0.0271 for FFEM and FREM, respectively. The ratio 
of the mean of the standard deviation (of the coefficient 
estimates) was 1.0015 (FFEM/FREM). See Figure  3 for 
a graphical overview of the FFEM, multivariate FREM 
(conditional on all 6 covariates), and univariate FREM 
coefficient estimation accuracy. The higher precision of 
the univariate FREM coefficients is due to correlated co-
variates being disregarded, and the univariate coefficients 
describing the effect of that single covariate in isolation.

High correlation

Multivariate coefficients and UPV estimates from FREM 
and FFEM were very similar. The mean of the RMSEs of 
the six coefficient estimators were 0.0412 for both FFEM 
and FREM, and the ratio (FFEM/FREM) of the mean of 
the standard deviation of the coefficient estimators was 
1.0005. Univariate covariate-parameter coefficients cal-
culated from the FREM estimation, demonstrates higher 
estimation precision than multivariate estimates (see 
Figure  4), showing how univariate coefficients can be 
utilized in the presence of highly correlated covariates. A 
similar trend was seen for the previous experiment, see 
Figure 3, although the effect is not as pronounced there, 
due to the covariates being less correlated.

Parameterizations

The four covariate-parameter relation implementa-
tions all produced coefficients and UPV estimates to the 

equivalent FFEM models, as shown in Table 3. Parameter 
uncertainty was small for both methods, at most 4.77% co-
efficient of variation in FREM (�AAG,MTT) and 4.27% in 
FFEM (�AAG,MTT ) for log-normally distributed parameters.

Non-normal covariate distributions

The expected empirical age–AAG covariance matrix, 
given the current FREM parameterization, was accurately 
estimated using both original and log-transformed data. 
See the linear and log-linear FREM results in Table  3, 
where accurate estimates of coefficients and UPV are de-
pendent on accurate covariate covariance matrices.

DISCUSSION

Experiments in both original and simulated data show that 
both FREM and FFEM can accurately estimate the base 
model parameters, the IIV, and the covariate effects. The 
results of the simulation data comparison suggest that the 
FREM estimate of the parameter IIV covariance matrix is 
slightly more precise, particularly the off-diagonal elements 
of the UPV IIV covariance matrix (see Figure  2). This is 
likely due to FREM estimating the TPV, which is more pre-
cise than the UVP IIV obtained after including structural 
covariate relationships. The same behavior was observed in 
the high correlation experiment (results not shown).

A unique feature of FREM is its ability to provide coef-
ficient estimates for any subset of covariates from a single 
estimation. The first conditional coefficients to consider 

F I G U R E  2   Re-estimation accuracy for structural parameter population values and residual error (left), and the unexplained parameter 
variability (UPV) covariance matrix (right). Accuracy is here calculated as estimated mean value minus the true value, divided by the true 
value. FFEM, full fixed-effects model; FREM, full random-effects model; IIV, interindividual variability
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are the univariate FREM coefficients. These provide pre-
cise measures of the explanatory effect of each covariate 
in isolation, making them very useful tools in covariate 
analyses. They are especially helpful in communicating 
covariate effects, because it is not necessary to include 
any caveats or conditional assumptions regarding other 
covariates. The accuracy of these univariate coefficients 
is seen in Figures 3 and 4, where the multivariate coeffi-
cients are less accurate due to the inclusion of correlated 
covariates. One aim of removing correlated covariates 

in FFEM is to obtain coefficient estimates that are es-
sentially univariate, but their highly correlated nature 
means that either many covariates must be excluded, or 
some correlations must be accepted. To acquire similar 
metrics in fixed-effects methods, the effects of each co-
variate must instead be estimated separately, resulting 
in a large number of models, and potentially introduc-
ing bias and uncertainty.

Beyond the univariate coefficients, we have also shown 
how the results of any covariate subset can be retrieved 

F I G U R E  3   Re-estimation accuracy for parameter-covariate relation coefficients estimated by FFEM and FREM, as well as univariate 
FREM coefficients calculated from the FREM estimation. Each column of panels presents one parameter, and each row one covariate. 
Accuracy is here calculated as estimated coefficient value minus the true coefficient value, divided by the standard deviation of the covariate. 
The reason for normalizing to the standard deviation is to be able to compare univariate and multivariate coefficients. FFEM, full fixed-
effects model; FREM, full random-effects model; PC, prior chemotherapy; Perf, performance status grade
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from a single FREM estimation. The ability to include a 
large set of covariates in the FREM estimation, and then 
condition the analysis on different subsets, has several ap-
plications. The results of the full set may, for example, be 
more relevant for inference, whereas a limited set may be 
more useful for prediction. High quality, covariate-rich data 
may provide the opportunity to estimate many predictive 
relationships in a particular model, but only some of these 
may be available in a specific population where the model is 
to be applied. Such adjustments are possible from the single 
FREM estimation. The impact of knowing different sets of 
covariates can also be elucidated without making changes 
to the model, which in turn can help consolidate data from 
different trials or guide the design of future trials.

The final subset to consider is the empty set (i.e., the 
FREM IIV estimates conditioned on no covariates). It may 
be argued that this is obtainable from estimating the base 
model without covariate effects, but two subtleties need 
to be considered: (i) the estimation uncertainty may dif-
fer, especially because covariate observations add infor-
mation; and (ii) TPV is not necessarily equal to explained 
parameter variability + unexplained parameter variabil-
ity.21 The differences of uncertainty in FFEM and FREM, 
as well as the different approaches to retrieve uncertainty 
of the calculated measures of FREM (conditional coeffi-
cients and variability), have not been explored and war-
rants further study. Either propagation of uncertainty or 
empirical simulation retrieval may be attempted. For the 
latter, the differences in explained and unexplained pa-
rameter variability have not been explored in depth either. 
However, the perspectives that the natural separation of 
TPV and UPV provide is an advantage of FREM.

Although the effects of any covariate subset on all 
parameters can be extracted from the FREM estimates, 

it is not trivial to exclude specific relations. This means 
that physiologically improbable effects, such as creati-
nine clearance on absorption rate, will be present in the 
FREM method as long as there is a non-zero correlation 
between individual values of the parameter and the co-
variate. Keeping all relations maintains the benefits of the 
full model approach, acknowledges imperfections in the 
data, and avoids bias. Specific covariate effects with strong 
support, such as maturation of clearance or allometric 
scaling, can be implemented before FREM is applied.

We have shown how to implement four common 
parameter-covariate relations in FREM and obtain coeffi-
cient estimates equivalent to fixed-effect implementations. 
Although additional relations can undoubtedly be imple-
mented, there are relations that cannot be formulated 
for FREM. This does not exclude the use of FREM, but it 
means that calculated coefficients have a different scale 
than those from an FFEM method would. This restriction 
does, however, come with some subtle advantages. For ex-
ample, a parameter restricted to [0,1] with logit-normally 
distributed IIV requires no extra consideration for restrict-
ing the effects to the same domain.

As observed in the non-normal covariate distribution 
experiment, covariates are not required to be normally dis-
tributed for FREM to produce the expected results. This is 
also supported by the accurate estimation of coefficients 
for categorical covariates in other experiments. All that is 
required is that the estimation method can produce the 
arithmetic mean and variance of the covariates (i.e., the 
normal distribution parameterization), even if the true 
distribution is not a multivariate normal.

The presented examples do not address data with 
multiple covariate observations per subject or missing 
covariate observations. Multiple observations can simply 

F I G U R E  4   Re-estimation accuracy 
for multivariate parameter-covariate 
relation coefficients estimated by FFEM 
and FREM, as well as univariate FREM 
coefficients calculated from the FREM 
estimation. Accuracy is here normalized 
to the standard deviation of the covariate 
in order to compare the multivariate and 
univariate coefficients. FFEM, full fixed-
effects model; FREM, full random-effects 
model; MTT, mean transit-time
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be ignored by using a baseline or average value, but there 
may be valuable information in these variations that can 
be extracted in several ways. Random variations can 
be captured by introducing a residual error term in the 
FREM covariate model, and any time-dependence of 
time-varying covariates can be modeled there as well. It 
is also possible to consider observations at different oc-
casions as separate covariates and estimating their cova-
riance with interoccasion random effects.11 For missing 
covariate observations, there is an inherent support for 
the handling of these in the covariate covariance matrix 
estimated by FREM. This topic is further explored by 
Nyberg et al.13

Estimation efficiency was not an aim of this work, and 
all estimations used identical IMPMAP settings for par-
simonious reasons. Both gradient-based estimation meth-
ods, such as first-order conditional estimation (FOCE), 
and expectation maximization (EM) methods, such as 
IMPMAP, can be suitable for FREM estimation. The au-
thors have observed minimization issues with FOCE in 
some models. This may be caused by the FREM matrix 
having a small positive-definite space, and can sometimes 
be alleviated by using an EM method. Another reason to 
consider EM methods is that the FREM method adds ad-
ditive random effects with known means and sampling 
variances, which enables efficient Markov chain Monte 
Carlo sampling. The FREM may also be suitable for lin-
earization around the population estimates,22 a principle 
that has previously been successfully applied to step-wise 
covariate modeling.23

CONCLUSION

We have proposed FREM, a full random effects ap-
proach to covariate modeling. We have demonstrated its 
unique advantages over full models of fixed effects, and 
have discussed its current limitations regarding the data 
and covariate-parameter relations that it supports. The 
advantages include covariate correlation management 
and conditional interpretations of covariate effects. Our 
results support FREM as a more informative alternative 
to FFEM. We have also highlighted areas where further 
study is warranted, such as time-variant covariates, miss-
ing data, and covariates measured with error.
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